

In conversation with... iConsensus

10 October 2023

How to make a more efficient, cost-effective and user-friendly process for the development and manufacture of biopharmaceuticals

In conversation with... iConsensus

Meet the speakers

Veronique Chotteau

Coordinator of the iConsensus project Associate Professor of Industrial Biotechnology

Fabien Abeille

Co-coordinator of iConsensus and leader of work on system automation & integration, and data monitoring & management

Senior R&D Scientist

Micronit

Åsa Emmer

Luc Kupers

Leader of iConsensus work on the capillary electrophoresis-chip platform

Project Leader of iConsensus - Technical Former MSAT Fellow Innovation

Professor in Analytical Chemistry

Aman Russom

Leader of the iConsensus work on affinity-based, microfluidics and holographic methods

Professor of Nanobiotechnology

Marc Dietrich Voss

Project Leader of iConsensus - Management

Director Global Alliance Management Public-Private

Salomé Koussoroplis Scientific Project Officer

Innovative Health Initiative

14:00-14:10 Introduction and welcome 14:10-15:25

- Challenges and objectives
- Tangible results and their impact
- · Exploitation of results and sustainability of assets developed

15:25-15:30 Closing remarks

The session will focus on a project supported by the Innovative Medicines Initiative (IMI), a partnership between the European Union and the European pharmaceutical industry.

Ask questions and interact with the speakers (bottom of your screen)

The session is being **recorded**.

The recording will be posted on IHI's website and Youtube channel.

Creating a sensing platform for biopharmaceutical cultivation process and high-throughput system

Assoc. Prof. Veronique Chotteau, KTH

Dr. Luc Kupers, former Sanofi

Dr. Marc Dietrich Voss, Sanofi

Dr. Fabien Abeille, Micronit

Prof. Åsa Emmer, KTH

Prof. Aman Russom, KTH

Challenges and objectives

Pharma small molecule

- Aspirin production is a chemical reaction
- Tons per day

nsensus

Biopharmaceutical

- A protein is a chain of amino acids.
- Kg's per year

Biopharmaceuticals

large molecular weights

high structural complexity

heterogeneous ≠ molecular species

heterogeneous impurity profile

sensitive to physical conditions

bio-assays

master cell banks

post-translational modifications

PTM: Glycosylation

- Correct folding
- Potency
- Effector functions
- Receptor binding
- Immunogenicity
- Pharmacokinetics
- Stability

The production of biopharmaceuticals

Webinar IHI

10

ACTIP

The Advanced Cell Technology Industrial Platform (ACTIP) ACTIP is an independent non-profit association of European companies and institutions engaged in the industrial use of advanced cell technology for research, development and/or production of biopharmaceuticals, vaccines and other preventative or therapeutic approaches.

Its main objectives are to bring advanced cell technology experts together for networking, keeping up to date on cutting-edge developments and focus on technological and applied-oriented challenges for the industrial use of advanced cell technology.

11

Webinar IHI

ACTIP Position Paper

2012 drafted position paper for the EU

Animal Cell Technology Industrial Platform

Т

POSITION PAPER ON RESEARCH AND INNOVATION OF ANIMAL CELL TECHNOLOGY

in support of Europe's biopharmaceutical industry

Way to Strategic Research Agenda

visit in 2012
to the DG
R&D
accompanied
by Hansjorg
Hauser,
Chairman of
ESACT

...directed us towards the IMI2-program

Contacted
Executive
Director
Science
Policy &
Regulatory
Affairs at
EFPIA

Strategic Research Agenda for biomedical research

ESACT European Society for Animal Cell Technology

Strategic Research Agenda

The right prevention and treatment for the right patient at the right time Outline Strategic Research Agenda for a biomedical research public private partnership under Horizon 2020

July 2013
Strategic Research Agenda
for biomedical research

needed for their utilisation initiating formal consultation as required.

- The development of predictive pre-clinical tools for toxicity and/or immunogenicity to reduce the risk of failure in clinical trials. Develop a better understanding of the
- Conduct the basic research and develop the tools required to support the development of innovative preventative medicines for disease of high societal impact
- Implementation of new approaches for the development and production of biopharmaceuticals, vaccines, cell-based therapies, tissue engineering, gene therapies, preventive medicines or more rapid diagnostics
- Where co-investment is justified based on societal and healthcare need, and there are sufficient validated tools available, jointly develop novel therapeutic agents and disease prevention strategies
- Conduct research required to support the establishment of the necessary regulatory pathways and frameworks and payer framework to support the authorisation of new preventative medicines (driven under axis 2)
- Conduct research in manufacturing technology to produce the innovative medicines through highly flexible and cost-effective processes that guarantee high quality and safety.
- Develop new simple and robust process and product analytical tools to assure highly controlled and safe production processes, including effective methods to detect and prevent adventitious agent contaminations.
- Develop and/or optimize vaccine/protein formulation and conduct more research for the right excipients that increase stability, especially with regard to proteins and the new and complex multivalent vaccines.
- Provide improved access to information and support allowing individuals to make more

Webinar IHI 14

Why public-private cooperation?

Industry

Standardized GMP-processes
Technology development not core business

Academia & SMEs

Innovation drivers
Focus on new technologies

Need for heterogenous and complementary collaboration partners

Leveraging existing networks of public partners: trust & capabilities

→ Innovative Medicines Initiative

Building industry consortium and Call 10 launch

4.7 mio€ in-kind budget

IMI2 **10th Call for proposals**

Biomanufacturing 2020 (bioMFG2020) Development of Innovative high throughput analytical tools and methods to characterize cell culture fluid during development and commercial cell culture processes

> **Kupers Luc** 09.12.2016 • IMI webinar

Webinar IHI

16

Stage 1

10 Expressions of interest:

- Scientific expertise
- Complementary technological assets and capabilities
- Academic institutes and heterogenous SMEs represented
- Previous experience with public private partnerships

iConsensus selected

Integrated control and sensing platform for biopharmaceutical cultivation process high-throughput development and production

Webinar IHI

17

Full project proposal and grant agreement

Innovative Medicines Initiative 2 Joint Undertaking [grant agreement No 777397]

Negotiation of consortium agreement and governance

General Assembly

One representative of each participant

Coordination Team

Coordinator (KTH), Co-Coordinator (Micronit) Project Leader (Sanofi), Project Co-Leader (Rentschler)

Consortium Management WP9 (KTH/Sanofi)

Managing Board

Coordination Team members and all WP leads (academia) and co-leads (pharma)

WP2	WP3	WP4	WP5	WP6	WP7	WP8
m2p-Labs	KTH	Presens	UH	KTH	Micronit	UMons
(Lead)	(Lead)	(Lead)	(Lead)	(Lead)	(Lead)	(Lead)
&	&	&	&	&	&	&
Rentschler	Synthon	GSK	Sanofi	Bayer	UCB	Pfizer
(Co-Lead)	(Co-Lead)	(Co-Lead)	(Co-Lead)	(Co-Lead)	(Co-Lead)	(Co-Lead)
All WP2 participants	All WP3	All WP4	All WP5	All WP6	All WP7	All WP8
	participants	participants	participants	participants	participants	participants

WP 9: Consortium Management and Administration (KTH / Sanofi)

WP 1: Ethics Requirements (KTH)

28 May 2018
iConsensus
1st plenum
meeting and
start of the
project

sanofi

byondis'

Tangible results and their impact

iConsensus – The Project

iConsensus – The Project

iConsensus – The Project

Correct quality aggregation

> glycosylation, etc...

cells

Culture

biopharmaceuticals

sugars

amino acids

vitamins

salts

metals

growth factors

fatty acids/lipids

etc...

Cell culture bioreactor

iConsensus – The Project = tools for on-line monitoring, for modelling and for process development

innovative health initiative

iConsensus – The Project = tools for on-line monitoring, for modelling and for process development

iConsensus – The consortium of experts academia and SME's

Achievements

New products New technolo gies New collabora

tions

17 Peer reviewed publicati ons 28 Presenta tions at conferen ces **Patent** applicati ons

Attractio n for new technolo gies

6

Applications in industry available today

New autoclavable sensors for pH, DO, pCO2

New application of holographic-based cell density quantification

New high throughput assay for aggregation assay

Applications in industry → further developments for commercialisation

Miniaturised sensors

Proof-of-concept ✓

2 to 4 years

Commercialisation

45 cm

The public-private partnership to achieve iConsensus results/impact

direct contact for beta testing

concrete applicatio ns

> access to equipment

> > industrial constraints

> > > **ACTIP**

Industrial relevance

regulatory

aspects

scientific enthusias m

motivation

WP7 - system automation & integration, and data monitoring & management

Objective – Create an At-Line Integrated Analytical System (ALIAS) hosting different miniaturized analysis modules and capable of controlling, monitoring and collecting data of the Platform of At-/On-Line Analyses (PAOLA)

Webinar IHI

WP7 - system automation & integration, and data monitoring & management

ALIAS: Custom liquid handler integrating 3 analyses modules...

Capabilities:

- Large range of volume handling: from 0.1 µL to 1 mL
- Sample preparation (dilution, analyte complexation)
- Reagents formulation (dilution, chemical reactions)
- Reagents storage (vials, tubes, well plates) and preservation (light protection, cooling)

Webinar IHI

34

WP7 - system automation & integration, and data monitoring & management

• ...and electronics for automation, monitoring, control and data collection

WP7 - system automation & integration, and data monitoring & management

- Integrated control and sensing platform for biopharmaceutical cultivation process high-throughput development and production
- ALIAS At-line integrated analytical system:
 - Modular architecture for sample/reagent preparation + analyses
 - 3 analytical modules performing 8 analyses (potentially up to 12)
 - 800 μL of raw sample, 1-3 complete analysis / day

- Objective analysis of culture media components and pharmaceutical product
 - Why, what, how?
- Why?
 - Correct product
 – safety for patients
 - Efficient manufacturing lower cost for patients/society, sustainability

Enough but not too much nutrients for "happy cells" and efficient production?

- What?
- Nutrients, products, by-products
 - Amino acids
 - The building blocks of proteins

- Sugars and vitamins
 - Energy source, cell growth and viability

- Product, monoclonal antibody, biopharmaceutical
 - Correct molecule, no aggregates/clusters, no fragmented products

- How?
- Separation of analytes from the complex cell media
- Capillary electrophoresis, CE, and chip CE
 - Low sample volumes
 - Low consumption of chemicals
 - Low waste
 - Fast analysis
 - Small instrumentation

- How?
- CE and chip CE according to iConsensus

Success? Usefulness?

- CE chip module working ☺
- CE methods for ☺ :
 - · amino acids
 - sugars
 - vitamins
 - product
- CE chip methods for ☺:
 - amino acids
 - sugars
- Used for production samples ©
- Tested by industrial partners ☺:
 Byondis, Rentschler, Sanofi

Debbie van der Burg

Webinar IHI

 Objective – measurement of relevant <u>proteins</u> and pharmaceutical <u>product</u> <u>quality analysis</u>

Analysis of multiple protein targets in bioreactor samples using **immunoassays**

Measurement of samples from a Rituximab-producing CHO cell bioreactor

✓ Good correlation between the **standard methods** (□) and the **microfluidic assays** (△,★) developed in the scope of iConsensus

Measurement of glycosylation in the target biopharmaceutical product

✓ Measurements in the microfluidic chip match the reference values (%)

Exploitation of results and sustainability of assets developed

Exploitation of results and sustainability of assets

iConsensus peer-reviewed publications and application notes

Novel high-throughput microbioreactors for screening in mammalian cell cultures verified with CHO cells with pH and DO controls (m2p/Beckman, RWTH)

- https://publications.rwth-aachen.de/record/854042
- https://publications.rwth-aachen.de/record/825312
- https://publications.rwth-aachen.de/record/843965

New methods of capillary electrophoresis (CE), also in chip format for analysis of culture components, e.g. amino acids, sugars (KTH, Kantisto), and new CE methods for vitamins and antibody

- https://doi.org/10.1002/elps.202100122
- https://doi.org/10.1002/biot.202100325
- https://doi.org/10.1002/elps.202100213
- https://doi.org/10.1155/2022/2819855
- https://doi.org/10.1002/elps.202200144
- https://doi.org/10.1016/j.trac.2023.116975

New optical on-line sensors (Presens) with successful tests by industry

- https://www.presens.de/knowledge/publications/application-note/cell-culture-monitoring-in-stirred-tank-bioreactor-with-optical-ph-sensors-1717
- https://www.presens.de/knowledge/publications/application-note/evaluation-of-anoptical-co2-probe-for-long-term-monitoring-in-stirred-tank-bioreactors-1715
- https://www.presens.de/knowledge/publications/application-note/evaluation-of-anoptical-o2-probe-and-sensor-spots-for-long-term-measurements-in-stirred-tankbioreactors-1713
- https://www.presens.de/knowledge/publications/application-note/online-co2monitoring-in-cho-cell-culture-1759

Generic chemometric partial least square (PLS) prediction model (Hohenheim Univ.) to predict glucose, glutamate and lactate levels using Raman spectra from various CHO cultures and spectrometers

doi.org/10.3390/s22155581

Prediction of amino acids and glycosylation in perfusion process (KTH)

https://doi.org/10.1016/j.bej.2022.108426

2D fluorescence for monitoring in microtiter plates

- https://www.mdpi.com/2306-5354/9/9/438
- https://doi.org/10.1186/s13036-023-00332-0
- https://doi.org/10.3390/fermentation9020095

New quantification of cell density by holographic image (Iprasense), with successful test at GSK and integration to high-through put bioreactors.

- https://www.iprasense.com/wp-content/uploads/2023/02/NORMA-4S-APPLICATION-NOTE-A-fully-Automatic-Cell-Counter-for-High-Throughput.pdf
- https://www.iprasense.com/applications/viable-cell-density-monitoring-inbioreactor/#

Novel microfluidic bead-based immunoassays validated with antibody producing CHO cell bioreactor culture (KTH), with Micronit's COC devices, for host cell proteins and antibody detections in stand-alone module (Ipratech), and fast DNA quantification by bead-based detection

- 10.1021/acssensors.0c01884
- 10.1016/j.copbio.2021.06.018

Webinar IHI 48

New collaborations / funding opportunities / visibility

attraction for working with iConsensus academia partners

→ EU project 'label', EFPIA partners 'weight'

Further research needed to continue advancing the field

Miniaturised instruments for monitoring in process

High need for bioproduction in cell and gene therapy

iConsensus in a nut-shell

iConsensus, an ambitious project, which has resulted in new products, applications and new thinking technology, from allying 19 partners, academia experts, focus-oriented SME's and industrial relevance

sanofi

RAMCON

Innovative Medicines Initiative 2 Joint Undertaking [grant agreement No 777397] sensus

Webinar IHI

52

Q&A time

Use the **chat** below to ask questions to the speakers

To stay informed about IHI, please visit:

ihi.europa.eu

@IHIEurope

Innovative Health Initiative (IHI)

Thank you

